Enzyme Dynamics of the Resurrection Plant Selaginella lepidophylla (Hook. & Grev.) Spring during Rehydration.
نویسندگان
چکیده
The activities of 10 enzymes involved in carbohydrate metabolism were measured in both desiccated and rehydrated fronds of the desiccation-tolerant pteridophyte Selaginella lepidophylla (Hook. & Grev.) Spring. Enzyme conservation was defined as the ratio of desiccated to hydrated frond enzyme activity. The mean level of conservation was 74%, with nine of the 10 enzymes showing significant activity increases (P<0.05) during hydration. The mean of photosynthetic enzyme conservation was significantly lower (P=0.05) than the mean for glycolytic and respiratory enzymes combined. Chloramphenicol inhibited the normal activity increase in ribulose bisphosphate carboxylase and (NADPH)triose-P dehydrogenase but not pyruvate kinase upon rehydration. Cycloheximide did not affect the normal activity increase for these three enzymes. It is concluded that substantial enzyme conservation is beneficial for rapid resumption of metabolic activity in resurrection plants.
منابع مشابه
Hydro-Responsive Curling of the Resurrection Plant Selaginella lepidophylla
The spirally arranged stems of the spikemoss Selaginella lepidophylla, an ancient resurrection plant, compactly curl into a nest-ball shape upon dehydration. Due to its spiral phyllotaxy, older outer stems on the plant interlace and envelope the younger inner stems forming the plant centre. Stem curling is a morphological mechanism that limits photoinhibitory and thermal damages the plant might...
متن کاملTruncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast.
Plants, such as Arabidopsis thaliana and Selaginella lepidophylla, contain genes homologous with the trehalose-6-phosphate synthase (TPS) genes of bacteria and fungi. Most plants do not accumulate trehalose with the desert resurrection plant S. lepidophylla, being a notable exception. Overexpression of the plant genes in a Saccharomyces cerevisiae tps1 mutant results in very low TPS-catalytic a...
متن کاملMetabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance.
Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on...
متن کاملOrgan Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The id...
متن کاملSolute leakage resulting from leaf desiccation.
The leakage of solutes from foliar tissue is utilized as a dynamic measure of apparent changes in membrane integrity in response to desiccation. It is found that rehydrating leaf discs of cowpea (Vigna sinensis [L.] Endl.) show increasing leakiness in proportion to the extent of prior desiccation, whereas Selaginella lepidophylla Spring., a resurrection plant, does not. The elevated leakage rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 82 1 شماره
صفحات -
تاریخ انتشار 1986